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Abstract

Colorectal cancer (CRC) is one of the most frequent causes of cancer-related death worldwide. Chemotherapeutic agents used
in CRC treatment include oxaliplatin, irinotecan, leucovorin, Tegafur-Uracil, capecitabine, 5-fluorouracil, and monoclonal anti-
bodies. The development of other effective drugs is urgently needed for CRC patients. As the epigenetics of CRC is increasingly
understood, epigenetic modifiers (or epidrugs) targeting epigenetic mechanisms could play an important role in this process.
During the past two decades, many studies have demonstrated that many specific genes are silenced by hypermethylation
of their promoters in CRC, which means that the expression of these genes could be restored since epigenetic alterations
are reversible. In fact, some molecules have been studied for their ability to inhibit DNA methyltransferases, and the results
showed that silenced genes were reactivated. These molecules could be natural, such as curcumin, tea polyphenols, quercetin,
and nanaomycycin A, or synthetic, such as 5-azacytidine, decitabine, procainamide, and zebularine. On the other hand, we
hypothesized in this article that ten-eleven translocation inhibitors could be another class of epigenetic modifiers since they
could prevent chromosomal instability through decreasing the global hypomethylation of genomic DNA. Some studies have
reported that some ten-eleven translocation inhibitors exhibit anticancer effects, which supports our hypothesis. Additionally,
we have proposed combinations of these epigenetic modifiers according to different parameters.
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In this review, we will first elucidate epigenetic modifications
involved in CRC with a focus on DNA methylation (hypermeth-
ylation and hypomethylation) and then provide a list of potential
molecules (natural and synthetic) that could be used as epigenet-
ic modifiers to target alterations in gene methylation, one of the
most involved epigenetic alterations in CRC. Finally, we propose
combinations of these epigenetic modifiers according to different
parameters, such as their source, mechanism of action, target and
chemical structure. Information given in this paper could help re-
searchers in the development of new molecules and combinations
of molecules to test as potential epigenetic modifiers in the treat-
ment of methylation alterations in CRC and other cancers.

Colorectal cancer epigenetics

Epigenetics is a heritable alteration of gene expression that does
not affect the coding sequence of a gene. It has been confirmed
that epigenetic alterations play a central role in cancer pathogen-
esis, especially in colorectal cancer. During the past two decades,
many studies have reported a correlation between certain CRC-
specific gene expression patterns and the absence of gene muta-
tions. For example, microsatellite instability, one of the hallmarks
of the CRC molecular subgroup, is the result of a deficiency in
the DNA mismatch repair system. This instability, in addition to
genetic mutations in one of the mismatch repair genes, can also
be the consequence of epigenetic silencing of the MLHI gene by
hypermethylation of its promoter.’ On the other hand, it has been
demonstrated that global hypomethylation of DNA could also lead
to CRC through chromosomal instability (CIN).®

DNA methylation in CRC

DNA hypermethylation

Compared with those in normal cells, there are hundreds of hyper-
methylated genes in CRC tumors, as revealed by CRC epigenome
sequencing.’” In the same study, researchers also showed that epi-
genetic alterations in tumors are significantly more prevalent than
genetic alterations among patients.” Another study reported that
some groups of CRC patients have greater hypermethylation of
promoter regions, known as the CpG island methylator pheno-
type.® In a large study, genome methylation profiles were com-
pared between CRC cells and normal cells using the MBD-capture
protocol.” A total of 322,551 genomic regions (249.5 Mb of the
human genome including 7 million CpG sites) were analyzed. Ac-
cording to the results of this study, most of the differentially meth-
ylated regions (DMRs) between CRC and normal cells were hy-
permethylated.’ Furthermore, hypermethylated DMRs were more
frequent in intragenic, gene-regulatory, or CpG shelf-shore island
segments, as shown in Table 1.10-32

DNA hypomethylation

The development and progression of CRC involves a series of
events. These different steps, starting with the transformation of
normal colonic epithelium to an adenomatous intermediate and then
to an adenocarcinoma, require multiple genetic mutations. Among
these genetic events, genomic instability is now described as the
main molecular driving force in CRC. In fact, CIN has been reported
in 65%—70% of sporadic CRC patients.3® There are at least three
different pathways associated with genomic instability: CIN, micro-
satellite instability, and the CpG island methylator phenotype. The
majority of CRC cases are caused by the CIN pathway. CIN is char-
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acterized by aneuploidy (imbalances in chromosome number) and
loss of heterozygosity (LOH), and it can result from defects in chro-
mosomal segregation, telomere stability, and DNA damage repair.*

Hypomethylation is recognized as an early molecular event
leading to CIN that can cause deletion, translocation, inversion
or duplication in the entire or part of the chromosome.’> As a
consequence of global DNA hypomethylation, some genes can
be released from inhibition induced by the methylation of their
promoter and become overexpressed, which leads to the activa-
tion of oncogenic pathways that are crucial for CRC pathogenesis.
Additionally, the exploration of global DNA methylation could
have potential clinical applications, such as early cancer forma-
tion by cell-free DNA (cfDNA) fraction analysis. In fact, there
is a good correlation between global DNA methylation and long
interspersed nuclear element (LINE-1) methylation levels since
LINE-1 (mobile genetic elements) retrotransposon composes ap-
proximately 17% of the human genome.>?

Histone modifications

Histone modifications also play a key role in carcinogenesis. In the
context of CRC, histone acetylation and methylation status have
been widely studied, and it has been shown that they are associ-
ated with various clinicopathological features of CRC. In fact, it
has been shown that H3K9me (methylation of lysine 9 on histone
3) is more prevalent in CRC and adenomas compared to normal
colonic mucosa, and H3K27ac (acetylation of lysine 27 on H3)
and H4K12ac (acetylation of lysine 12 on H4) are more prevalent
in CRC in comparison with normal mucosa.’® Additionally, ChIP
(chromatin immunoprecipitation technique) of circulating nucle-
osomes revealed decreased levels of H3K9me3 (trimethylation of
lysine 9 on H3) and H4K20me3 (trimethylation of lysine 20 on
H4) in individuals with CRC compared with healthy individuals.?’

Noncoding RNAs (ncRNAs)

ncRNAs (IncRNAs (long ncRNAs) and miRNAs (microRNAs)),
which are considered to act via another epigenetic mechanism, can
inhibit protein expression and consequently influence many can-
cer-related pathways, especially at the post-transcriptional level.
MicroRNAs are involved in all CRC stages (initiation, progres-
sion and metastasis).?® For example, miR-143 prevents cell prolif-
eration through the inhibition of the KRAS mRNA transcript. This
mRNA was found to be frequently downregulated in CRC.3*

LncRNAs have attracted increasing interest as markers of CRC
over the past few years. Many IncRNAs related specifically to co-
lon cancer have been identified in different databases (NONCODE
database, PubMed, etc.). Most of these IncRNAs are upregulated,
and it seems that they function as miRNA sponges. HOX transcript
antisense intergenic RNA (HOTAIR), a IncRNA that has been ana-
lyzed in both serum and tissue, was shown to be upregulated in the
early stages of CRC development.“? Colon cancer-associated tran-
script 1 (CCAT1) is another CRC-related IncRNA that is reported
to be upregulated in both cancer cells and blood.*' In addition, it
has been demonstrated that the expression of the IncRNA growth
arrest specific 5 (GASS) is downregulated in human colon cancer
cells compared to normal tissues.*?

Signaling pathways

In CRC, as well as in all other cancers, alterations in several signal-
ing pathways, such as the mitogen-activated protein kinase (MAPK)
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DNA Methylation:

e H3K9me
¢ H3K27ac ¢ Hypermethylation = TSG
o H4K12ac’ Silencing
e H3K9me3 +
¢ H4K20me3 + ¢ Hypomethylation ==p CIN
e
®
®
ncRNAs: CRC Epigenetics isr:gcn;cl:l;\g Pathways (altered
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. « MAPK e 67LR
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Fig. 1. Some epigenetic alterations detected in CRC. Epigenetic alterations leading to CRC include DNA methylation (hypermethylation of TSG promotors
and global hypomethylation that leads to CIN), histone modifications, and ncRNA (miRNA and IncRNA). A (increased), + (presence), - (leads to). CRC,
coloractal cancer; TSG, tumor suppressor gene, CIN, chromosomal instability; miRNA, microRNA; ncRNA, non coding RNA; IncRNA, long non coding RNA.

pathway, PI3K pathway, and Wnt/B-catenin pathway, can lead to the
onset and development of cancer.** Crosstalk between these path-
ways can also promote colon cancer invasion and increase resist-
ance to drugs. Other pathways were reported to be involved in CRC,
such as the Janus-activated kinase/signal transducers and activators
of transcription pathway, 67 kDa laminin receptor pathway, nuclear
factor-kappa B pathway, nuclear factor-erythroid 2-related factor
pathway, and Hippo pathway. The Hippo pathway was shown to be
responsible for cell proliferation, differentiation, apoptosis, and tu-
morigenesis,* and its interaction with the Wnt/B-catenin pathway is
crucial for colorectal cancer development (Fig. 1).%3

Inhibitors targeting molecular signal transduction have modest
efficacy in nonhematologic malignancies because of the complex-
ity of the genome in solid tumors. Thus, molecules designed to
target abnormal DNA methylation, particularly in CRC, might be a
more efficacious anticancer treatment strategy. As epigenetic mod-
ifications are reversible, the molecules that can target the enzymes
involved in these mechanisms may be good drug candidates to fix
these alterations and subsequently restore normal gene expression.
These molecules are referred to as epidrugs or epigenetic modi-
fiers. In fact, many recent studies have reported that certain mol-
ecules are able to inhibit enzymes like DNMT (DNA methyltrans-
ferase) and HDAC (histone deacetylase), which are responsible for
DNA methylation and histone deacetylation, respectively.*®

Epigenetic modifiers as potential epidrugs for CRC treatment

As we have mentioned before, many studies have confirmed that
epigenetic mechanisms, such as DNA methylation, histone modi-
fications and ncRNAs, are strongly involved in many processes of
cellular physiology and development, and the alteration of these
mechanisms could, under certain conditions, lead to carcinogen-

esis through alteration of the expression of oncogenes or tumor
suppressor genes. Thus, since epigenetic modifications are revers-
ible, molecules able to restore normal gene expression by fixing
epigenetic alterations could be good candidates for use as agents
in the treatment of cancer, either alone or in combination with con-
ventional treatment. These molecules, called epigenetic modifiers
or epidrugs, can target DNA methylation, histone modifications
or ncRNAs. In this article, we will focus on molecules that target
DNA methylation in CRC, namely, DNMT inhibitors (as hypo-
methylating or demethylating agents) and ten-eleven translocation
(TET) inhibitors (as potential hypomethylating agents).

Demethylating (hypomethylating) molecules: DNA methyl-
transferase inhibitors (DNMTis)

DNA methyltransferases

DNA methylation is the most studied epigenetic mechanism, and
it could be considered the most important. In fact, DNA methyla-
tion is involved in many physiological mechanisms, such as cel-
lular differentiation, parental imprinting, and X-chromosome in-
activation. DNA methylation is catalyzed by enzymes called DNA
methyltransferases (DNMTs). These enzymes lead to the forma-
tion of 5-methylcytosine (SmC) by transferring a methyl group
from S-adenosyl-L-methionine to cytosine at CpG sites in the
gene promoter. In humans, de novo DNA methylation is ensured
by DNMT?3, while DNA methylation is maintained by DNMT]1 (a
multidomain protein consisting of 1,616 amino acids).

Currently, there is no doubt that deregulation of DNA meth-
ylation is associated with diseases, especially cancers. In fact, this
epigenetic modification, when it occurs on oncogenes or tumor
suppressor genes, could lead to carcinogenesis.*’ Additionally, be-
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Fig. 2. Synthetic demethylating (hypomethylating) molecules.

cause of alterations in DNA methylation, cancer cells can escape
apoptosis and resist chemotherapy.*®

Recently, some studies reported that certain drugs approved for
other indications could be good candidates for use as DNA meth-
ylation inhibitors. Among these drugs, hydralazine, procaine,*
procainamide,>® and certain antibiotics, such as mithramycin A.5!
Other natural and synthetic molecules could also be good can-
didates for DNMT inhibitors.5? Recently, researchers have been
working on the rational development of small-molecule non-nu-
cleoside inhibitors.3? This family of molecules is steadily grow-
ing and comprises a large variety of different chemical scaffolds
like polyphenolic compounds such as epigallocatechin-3-gallate
(EGCG) or compounds with acidic functions such as caffeic acid
or methylenedisalicylic acid.54-56

Synthetic molecules

5-Azacytidine

5-Azacytidine, shown in the Figure 2, is a cytidine analog modi-
fied at position 5 of the pyrimidine ring (with nitrogen instead of
carbon). Its incorporation into DNA disrupts the interaction be-
tween DNA and DNMTs (1 and 3). Consequently, the enzyme re-
mains covalently bound to DNA, and its function is inactivated.”
Furthermore, because of the inhibition of cytosine methylation,
there is a passive loss of methylation in daughter cells after repli-
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cation. Azacitidine, known to reactivate the expression of some tu-
mor suppressor genes (TSGs), is approved by the US FDA for the
treatment of myelodysplastic syndrome.5® This molecule restores
the normal growth and differentiation of cells via the demethyla-
tion of TSG.?

A clinical study reported that treatment with 5-azacytidine in
combination with entinostat (an HDAC inhibitor) restored TSG
and inhibited the growth of CRC cell lines. The same study showed
that the reversal of hypermethylation was observed in a subset of
patients and correlated with improved performance status.®?

Decitabine (and its derivative S-110)

Decitabineis a nucleoside analog of cytidine obtained by substi-
tution of a carbon by a nitrogen at position 5 of the pyrimidine
ring of deoxyribose (Fig. 2). Like 5-azacytidine, decitabine acts
by incorporating into RNA and/or DNA during the S phase of the
cell cycle. Decitabine is more specific and less toxic than azaciti-
dine, but both are good DNMT inhibitors even at low concentra-
tions.%! In addition, decitabine alone or in combination with other
chemotherapeutic agents, such as oxaliplatin, inhibited CRC cell
proliferation.%?

Procainamide

Procainamide, shown in the Figure 2, is a drug used to treat a va-
riety of atrial and ventricular dysrhythmias. Investigations have
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shown that this molecule is a specific inhibitor of DNMTT. It is a
competitive non-nucleoside inhibitor that interacts with the bind-
ing pocket of the enzyme, which increases the affinity of DNMT1
for hemimethylated DNA and S-adenosyl-L-methionine. This
inhibition of methylation leads to a reduction in the global 5SmC
content in the cell and decreases gene-specific hypermethylation at
promoter CpG islands, which could lead to the reactivation of TSG
inhibited by hypermethylation in cancer cells.%

Shih et al. showed that the /L27RA gene was downregulated in
a group of rats with lung injury induced by LPS and upregulated
in the LPS+procainamide group. Thus, the demethylation of the
IL27RA promoter by procainamide restored the activation of this
gene, which is known to have an anti-inflammatory effect in sev-
eral models of inflammation.** Another study reported that exces-
sive methylation of antioxidant gene promoters increases oxidative
stress in many diseases. The involvement of DNMT inhibitors in
decreasing reactive oxygen species production has been observed
in many diseases, such as osteoarthritis chondrocytes and lung ad-
enocarcinoma cells.%® Moreover, Chih-Chin has shown that hyper-
methylation induced by microbial infection is associated with in-
creased inflammation and oxidative stress.%¢ These results showed
that procainamide may be a good candidate for use as a therapeutic
agent in diseases caused by oxidative stress, like colorectal cancer
(often associated with an alteration of the microbiota), because of
its involvement in DNA demethylation, suppression of superoxide
production and neutrophil infiltration.®® Gao et al. reported that
Procainamide inhibits the Wnt (Wingless type) pathway, which is
involved in carcinogenesis. Aberrant promoter methylation of Wnt
inhibitory factor-1 (WIF-1) is a crucial mechanism of epigenetic
silencing in human cancers, especially in colorectal cancer, where
this hypermethylation targets the 4PC gene (adenomatous poly-
posis coli), which functions as an inhibitor of the Wnt signaling
pathway.6’

Procaine

Procaine, shown in the Figure 2, a local anesthetic drug, is a non-
nucleoside inhibitor. Its DNMT inhibitor effect was first reported
in breast cancer cells, where it induced global DNA demethyla-
tion and restored the activation of certain TSGs.%® Moreover, it has
been demonstrated that procaine, at high concentrations, decreases
the proliferation of different cancer cells.®” Procaine acts by spe-
cifically binding to sequences rich in CpG islands, which inhibits
the DNMT-DNA interaction.”

Procaine inhibits the proliferation and migration of CRC cells.
Chang et al. reported that, when tested on HCT116 cells, pro-
caine significantly inhibited cell viability, increased apoptosis,
and decreased the expression level of Ras homolog family mem-
ber (RhoA) in a dose-dependent manner (p < 0.05). In fact, this
drug increased the proportion of HCT116 cells in the G1 phase and
downregulated cyclin D1 and cyclin E expression. In this study, it
was demonstrated that procaine inhibits the proliferation and mi-
gration of CRC cells through inactivation of the ERK/MAPK/FAK
pathways via the regulation of RhoA4.”!

Zebularine

Zebularine, shown in the Figure 2, is a nucleoside analog. Its
DNMT inhibitor effect is specific since it forms a close covalent
complex between DNMT and zebularine-substituted DNA, which
prevents methyl group transfer and subsequently inhibits DNA
methylation.”” In human squamous carcinoma cell lines, zebular-
ine has been shown to reduce viability and DNA synthesis through
cell cycle arrest at the G2/M phase and through apoptosis.”?

Jaafari A.: Role of DNMTis and TETis in colorectal cancer treatment

The effect of zebularine on colorectal cancer was investigated
by Yang et al., who reported that zebularine has cytotoxic effects
on cancer cell cultures, tumor xenografts and a mouse model of
colitis-associated CRC. This effect is achieved through the stabi-
lization of p53 via the ribosomal protein S7 (RPS7)/MDM2 path-
way and DNA damage.”

N-Phthalyl-L-tryptophan (RG-108)

N-Phthalyl-L-tryptophan is a non-nucleoside DNA methyltrans-
ferases inhibitor (IC,, = 115 nM) that blocks the active site of
DNMTs (Fig. 2). It has been shown that N-phthalyl-L-tryptophan
induces the demethylation and reactivation of TSG. In fact, in-
cubation of NALM6 and HCT116 (human colon carcinoma) cell
lines with low concentrations of this molecule results in significant
DNA demethylation without any detectable toxicity.”>

SGI-1027

SGI-1027, shown in the Figure 2, is a quinoline-based com-
pound. It is a nonnucleoside inhibitor of DNMT3B, DNMT3A,
and DNMT1 with IC;, values of 7.5 uM, 8 uM, and 12.5 pM,
respectively (with poly-dI-dC as the substrate). Jharna Datta et al.
demonstrated that SGI-1027 inhibits these DNMTs by competing
with S-adenosylmethionine in the methylation reaction. Different
cancer cells were treated with SGI-1027, and the results showed
that there was selective degradation of DNMT1 with minimal or
no effect on DNMT3A or DNMT3B. Moreover, prolonged treat-
ment of RKO (colorectal cancer cells) with SGI-1027 led to de-
methylation and reactivation of the silenced TSG P16, MLHI, and
TIMP3. Additionally, the same study reported the involvement of
the proteasomal pathway in the mechanism of action of this mol-
ecule. In addition, no significant toxicity has been detected in a rat
hepatoma (H4IIE) cell line.”®

Laccaic acid A

Laccaic acids or laccainic acids, shown in the Figure 2, are a group
of five anthraquinone derivatives. Laccaic acid A (LCA) is a tet-
rahydroxyanthraquinone (3,5,6,8-tetrahydroxy-9,10-anthraquinone)
substituted by two carboxy groups at positions 1 and 2. It has been
reported that LCA is a DNMT1 inhibitor with K, =310 nM and IC,
= 650 nM. In a study aiming to evaluate the anti-colorectal cancer
activity of the combination (LCA+ 5-FU), the results demonstrated
that LCA is a highly DNA-competitive inhibitor of DNMT]1. Ac-
cording to in vitro methylation assays, LCA competes with DNA
substrates and alters the expression of methylated genes in the MCF-
7 cell line.”” In another study, it was shown that LCA combined with
phenethyl isothiocyanate has a strong synergistic effect on CRC.
Additionally, LCA inhibited human colon carcinoma HT29 cell
growth with an IC50 value of 6.08 uM after 72 h of treatment and
induced cell apoptosis and cell cycle arrest at the sub-G1 phase.”®

MG-98

MG-98 is referred to as the second-generation DNMT inhibitor.
It is a 20-mer antisense compound with a phosphorothioate back-
bone. MG-98 is a highly specific inhibitor of DNMT1 mRNA
translation in humans. It acts by binding to the 3" untranslated re-
gion of DNMT1 mRNA. In vitro studies have reported that this
oligonucleotide restores the expression of the cyclin-dependent ki-
nase inhibitor p/6 (a-CDKN2A) through suppression of DNMT1
expression.” In preclinical studies and clinical phase I/I trials, it
has been demonstrated that MG-98 can lead to the reactivation of
silenced tumor suppressor genes safely and effectively. Thirty-two
patients with gastric, colonic, ovarian, breast, renal, lung cancer,
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and melanoma were treated with MG-98 administered as a 7-day
continuous infusion every 14 days, and DNMT1 activity in PB-
MCs was monitored during two cycles of therapy. DNMT1 inhibi-
tion was reported in 26 of 32 patients, and MG-98 was well toler-
ated, with early evidence of a clinical effect.??

Natural molecules

Curcumin

Curcumin, shown in the Figure 3, a plant-derived polyphenol, has
been shown to inhibit DNMT activity in various cancer cell lines,
including colorectal cancer cells, through the regulation of multi-
ple signaling pathways. These pathways include cell proliferation
pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bel-xL,
cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3,
9), tumor suppressor pathway (p53, p21), death receptor pathway
(DR4, DRY), mitochondrial pathways, and protein kinase pathway
(JNK, Akt, and AMPK).81:82 Additionally, curcumin treatment has
been reported to decrease global DNA methylation in a model of
leukemia cells.®? In another study aiming to assess the antitumor
effect of curcumin on CC531 colorectal cancer cells both in vitro
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and in vivo, the results showed that this natural product reduced
cell proliferation by more than 30% after 48 h and 50% after 72
h. The same study demonstrated, using a wound healing test, that
curcumin inhibited migration. Finally, in vivo, curcumin reduced
the tumor volume of liver implants of CRC cells by 5.6-fold.?*

Tea polyphenols: EGCG, catechin and epicatechin

Several tea catechins and bioflavonoids have been studied for their
ability to modulate DNA methylation catalyzed by prokaryotic
SssI DNA methyltransferase and human DNMTT1 (Fig. 3). Accord-
ing to the results of these studies, catechin and epicatechin inhibit-
ed DNMT]1 in a dose-dependent manner with IC50 values ranging
from 1.0 to 8.4 uM. The IC50 of EGCG, the most potent inhibitor,
ranged from 0.21 to 0.47 pM.%5 Since EGCG is the most effective
polyphenol, its mechanism of action was studied in silico. In silico
studies demonstrated that the gallic acid moiety is responsible, in
large part, for its high-affinity and direct inhibitory interaction with
the DNMT]1 catalytic site, and its interaction with the enzyme is
stabilized by Mg?".85

Other in vivo and epidemiological studies have reported that tea
polyphenols can inhibit the growth and metastasis of CRC through
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anti-inflammatory, anti-oxidative, and pro-apoptotic effects. Some
studies have shown that these natural molecules can influence sev-
eral signaling pathways in tumor cells, such as mitogen-activated
protein kinase pathway, phosphatidylinositol-3 kinase/Akt path-
way, Wnt/B-catenin pathway, and 67 kDa laminin receptor path-
way, leading to the inhibition of cell proliferation and apoptosis.
Additionally, other studies have suggested that tea polyphenols can
prevent the growth and metastasis of colorectal cancer by improv-
ing the immune response and decreasing inflammatory responses
through the modulation of the gut microbiota composition.¢

Quercitin

According to the results of a study aiming to evaluate the poten-
tial of quercetin, shown in the Figure 3, as an epigenetic modifier
in cancer, this phytochemical decreases the activity of DNMTs,
HDACs, and HMTs (histone methyltransferases) in a dose-de-
pendent manner. The same study reported that quercetin decreased
global DNA methylation levels in a dose- and time-dependent man-
ner and restored TSG expression by demethylating their promot-
ers. Additionally, an in silico study (molecular docking) showed
that quercetin could act as a competitive inhibitor by interacting
with residues in the catalytic site of several DNMTs and HDACs.%7

The protective effect of quercetin on colon cancer was investi-
gated in 45 rats using azotoxin methane (15 mg/kg s.c.) as a car-
cinogen. The results showed that quercetin reduces cytological
changes in colon cancer cells, decreases beta-catenin and Bcl-2
(anti-apoptotic gene) expression, and increases caspase 3 (apop-
totic gene) expression.38

Nanaomycin A

Nanaomycin A (see Figure 3 bellow) is an anthracycline antibiotic
belonging to the quinone class. It was isolated from Streptomyces.
Its mechanism of action depends on its reduction by respiratory
chain-linked NADH or flavin dehydrogenase. The reduced form
of this molecule produces singlet molecular oxygen (O,") after its
quick auto-oxidation by molecular oxygen, which is responsible
for its antimicrobial activity.®

Since it induces antiproliferative activity against cancer cell
lines, the epigenetic effect of nanaomycin A was first studied by an
in silico screening method for the inhibition of DNMTs. Kuck et al.,
in a biochemical study, reported that this molecule interacts with
the catalytic site of DNMT3B at specific AAs (Glu697, Arg731 and
Arg733) of the enzyme binding pocket. It has been shown that this
drug decreases the expression of DNMT1, 3A and 3B.3° This mole-
cule can also inhibit DNMT3B activity by reactivating the RASSF'14
tumor suppressor gene, which reduces cell proliferation and viabil-
ity.5%% In fact, RASSF1A4 (Ras association domain family 1), a pro-
apoptotic gene involved in microtubule stabilization, is among the
genes that are commonly silenced by methylation in CRC. The loss
of this gene leads to an increase in RAS/RAF/MAP kinase signaling
and death receptor-dependent apoptosis.’!

Resveratrol

Resveratrol is a natural polyphenol that has many biological activi-
ties. Recently, Resveratrol was shown to reactivate silenced tumor
suppressor genes through decreasing DNMT expression. Addition-
ally, synthesized derivatives of resveratrol (resveratrol-salicylate)
could exhibit an important DNMT inhibitor effect. Some of these
analogs selectively inhibit DNMT3. Additionally, the most active
derivative showed an important cytotoxic effect (greater than that
of resveratrol) against three human cancer cell lines: Hep-G2, SK-
BR-3, and especially HT-29 (colorectal adenocarcinoma cells).?%3
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Other natural molecules

Other natural molecules, such as fisetin,”* myricetin,”’ theafla-
vin,”¢ thearubigin,®® trichostatin,”” kazinol,’® genistein, silibinin,
luteolin, boswellic acid, mahanine and selenium, have been report-
ed to exhibit a DNMT inhibitory effect,”® which makes them good
candidates for use as hypomethylating agents for CRC treatment
(Table 2).

Hypermethylating molecules

TET Inhibitors (ten-eleven translocation inhibitors)

DNA methylation contributes widely to the dynamic chromatin
states that impart precise epigenetic landscapes, which maintain
cell type-specific transcriptional programs. Before the discovery
of TET protein enzymes, it was believed that DNA methylation
is an irreversible epigenetic event. These enzymes can modify
methylcytosine and potentially erase DNA methylation.!?® They
also play a key role in the efficient transcription of target genes
necessary for the proliferation and survival of tumor cells.!"
TETs are a family of three proteins, TET1, TET2, and TET3,
that are responsible for the catalysis of successive oxidation re-
actions of 5mC to 5-hydroxymethylcytosine, S-formylcytosine,
and 5-carboxylcytosine, respectively as seen in the Figure 4 bel-
low, 102,103

As with DNMTs, the activity of TET enzymes, which are in-
volved in removing epigenetic marks, is also a part of the disrup-
tion of epigenetic landscapes characterizing malignant transforma-
tion. Moreover, since TETs function is to demethylate CpG islands
of genomic DNA, this could be responsible for, or at least increase,
global DNA hypomethylation, which could lead to chromosomal
instability. Consequently, we can hypothesize that this family of
enzymes could be an interesting target for epigenetic modifiers in
the treatment of cancer. Indeed, in principle, inhibition of TETs
could lead to a decrease in global DNA hypomethylation and
therefore prevent chromosomal instability. The fact that some TET
inhibitors exhibit anticancer activity supports our hypothesis.!04105

Cytosine-based TET enzyme inhibitors

Some cytosine derivatives, shown in the Figure 5 bellow, have
been synthesized by substitution at the 5 position and evaluated for
their capacity to inhibit TET1 and TET2. The results showed that
the derivative obtained by chlorination at this position, Bobcat212,
had the most inhibitory effect, at 57% and 43%, on TET1 and
TET2, respectively. Another interesting derivative, Bobcat339,
which is substituted at the R2 position with 3-biphenyl, signifi-
cantly increased the inhibitory effect of TET1 and TET2 without
inhibiting DNMT3a.!0¢

aKG-dependent dioxygenases

2-Hydroxyglutarate (2HG), N-oxalylglycine (NOG), and dimethyl
fumarate (DMF) are known for their inhibitory effects on a vari-
ety of aKG-dependent dioxygenases.!”” Several molecules were
synthesized by substitution of the C4 position with either -keto,
-olefin, -methyl, or -cyclopropyl functional groups, and the C2 po-
sition was single or double substituted with -chloro, -fluoro, -hy-
droxy, -methyl, or —trifluoromethyl groups. These derivatives were
subsequently tested in vitro and in vivo for their ability to induce
cancer cell death and TET dioxygenase inhibition. These results
suggested that TET inhibitors need to be further investigated as a
new class of targeted agents for cancer treatment.'**
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Table 2. Some DNMT inhibitors used as potential epigenetic modifiers in CRC, classified according to their target, their origin, and their mechanism of

action
DNMT i Target Nucleoside/non nucleoside Mechanism of action Natural/synthetic
Azacitidine Global Nucleoside inhibitor Incorporation into the RNA Synthetic
DNMT and/or genomic DNA
Decitabine Global Nucleoside inhibitor Synthetic
DNMT
$110 (derivative of Decitabine) Global Nucleoside inhibitor, Synthetic
DNMT
Curcumin Global Non-nucleoside inhibitor, Direct inhibitory interaction Natural
DNMT of the catalytic site
EGCG DNMT1 Non-nucleoside inhibitor, Natural
Catechin DNMT1 Non-nucleoside inhibitor, Natural
Epicatechin DNMT1 Non-nucleoside inhibitor, Natural
Quercetin DNMT1 Non-nucleoside inhibitor, Natural
Fisetin DNMT1 Non-nucleoside inhibitor, Natural
Resveratrol DNMT Non-nucleoside inhibitor Natural
Genistein DNMT1 Non-nucleoside inhibitor Natural
resveratrol-salicylate derivatives DNMT3B Synthetic
Myricetin DNMT1 Non-nucleoside inhibitor, Natural
block the binding of
DNMTs to DNA
Procainamide DNMT1 Non-nucleoside inhibitor, Synthetic
RG108 (found by virtual screening) DNMT1 Non-nucleoside inhibitor, Synthetic
Procaine Global Non-nucleoside inhibitor, Synthetic
DNMT
SGI-1027 (lipophilic, quinoline- Global Non-nucleoside inhibitor, competitive inhibitor of SAM  Synthetic
based compound) DNMT
Zebularine Global Nucleoside inhibitor, form a covalent complex Synthetic
DNMT with DNMT and cytidine
deaminase in DNA
Laccaic Acid A DNMT1 DNA-competitive inhibitor Synthetic
MG-98 (20 bp anti-sense DNMT1 Non-nucleoside inhibitor, antisense oligonucleotide Synthetic
oligonucleotide) binding DNMT1
Theaflavin 3, 3'-digallate N6 DNMT3A  Non-nucleoside inhibitor, dietary polyphenols from Natural
black tea and coffee
Thearubigin DNMT3A  Non-nucleoside inhibitor, Natural
Nanaomycin A DNMT3B  Non-nucleoside inhibitor, quinone antibiotic Natural
Trichostatin A DNMT3B  Non-nucleoside inhibitor Natural
Kazinol C DNMT Non-nucleoside inhibitor Pro-apoptotic (via Natural

AMPK activation)

AMPK, AMP-activated protein kinase; CRC, colorectal cancer; DNMT, DNA methyltransferase; EGCG, epigallocatechin gallate; SAM, S-adenosyl-L-methionine.

C35

Forty TET inhibitors were designed using a virtual ligand screen-
ing pipeline (Lvspipe), and tested in vitro for their inhibitory ac-
tivity. The results demonstrated that C35, shown in the Figure 5
below, can inhibit the catalytic activities of both TET1 and TET3
with IC50 values of 3.48 uM and 2.31 uM, respectively. Using
molecular modeling, the same study reported that there is an inter-

action between C35 and the TET2 catalytic domain.'%®
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Proposed epidrug combinations

The epigenetic modifiers discussed in this article could be used
alone or in combination. Combinations of molecules with different
mechanisms of action are widely used to treat different diseases,
especially cancer.!”” Here, we propose some potential combina-
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ethylcytosine; 5-fC, 5-formylcytosine; 5-caC, 5-carboxycytosine; TET, ten-elleven translocation, 5ShmC, alpha ketoglutarate; TDG, thymine DNA glycosylase;

BER, base excision repair.

tions of epidrugs that could be useful for the treatment of CRC.
These combinations are designed according to different param-
eters, as shown in the Table 3.

Conclusions

Currently, epigenetic alterations are being increasingly explored as
targets in the treatment of cancer, especially CRC. This is because
epigenetic modifications are reversible, which means that they
can be fixed by molecules called epigenetic modifiers. Among
these epigenetic alterations that could lead to CRC carcinogen-
esis, alterations in the methylation of gene promoters are the most
studied, which prompted researchers to look for molecules target-
ing these alterations. As we have detailed in this article, many
natural and synthetic molecules could be interesting candidates

NH, NH,

ﬁc' ag

Bobcat212 Bobcat339

Fig. 5. Hypermethylating molecules. (a) Cytosine derivatives; (b) C35.
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as epigenetic modifiers targeting the alteration of methylation in
CRC. Two categories of these molecules have been described.
The first group consists of DNMT inhibitors, which are hypo-
methylating (or demethylating) agents that can restore the expres-
sion of genes silenced by hypermethylation of their promoters. In
the second group, we identified TET inhibitors that could prevent
chromosomal instability through decreasing the global hypometh-
ylation of genomic DNA. Finally, these epidrugs could be tested
alone, in combination with each other, or with other conventional
chemotherapeutic drugs. Although several DNMTis are used in
the clinic, there are still some limitations of DNMTis, such as
toxicity and lack of selectivity, that could be overcome by strate-
gies like combination with other molecules and/or modification
of their chemical structure to develop novel molecules with more
efficacy and less limitations.
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Table 3. Some proposed combinations of epigenetic modifiers targeting alterations in DNA methylation in CRC based on their mechanism of action

Parameter Combination Example of combination
Targeted enzyme (DNMT) Inhibitor of DNMT1 Procainamide + nanaoycin A
+ Laccaic acid + Trichostatin

Mechanism of action

Source

Chemical structure

Inhibitor of DNMT3

+

Incorporation into the RNA and/or genomic DNA

+ Thearubigin

Decitabine + curcumin

Direct inhibitory interaction of the catalytic site
block the binding of DNMTs to DNA

+
competitive inhibitor of SAM

Natural
+

Synthetic

Nucleoside + Non-nucleoside

Procaine + SGI-1027

Decitabine + EGCG
Quercetin + resveratrol-salicylate
Zebularine + Epichatechin

S-110 + Procainamide
5-Azacytidine + RG-108

CRC, colorectal cancer; DNA, deoxyribonucleic acid; DNMT, DNA methyltransferase; EGCG, epigallocatechin gallate; SAM, S-Adenosyl methionine.
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