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Introduction
Colorectal cancer (CRC) is considered one of the most frequent 
causes of cancer-related death worldwide. In 2020, 1.9 million 
people were diagnosed with colorectal cancer (≈10% of all new 
cancer cases worldwide). This number will increase to 3.2 million 
new cases per year. The CRC incidence increases with age (≈80% 

of all new cases in individuals aged more than 55). Despite recent 
progress in CRC treatment, the relative five-year survival rate has 
decreased to ≈70%.1 About 10% of cancer deaths are directly at-
tributed to CRC, which is the second leading cause of cancer mor-
tality. In 2020, the number of deaths due to CRC was estimated at 
935,000 worldwide (50% occurring between ages 50 and 74) and 
will reach 1.6 million deaths per year by 2040 according to the 
WHO. Furthermore, it has been reported that CRC causes impor-
tant treatment costs over time depending on the stage of disease, 
cancer subtype, country, and individual. On the other hand, CRC 
has been reported to have high mortality rates of 45%, 35% and 
47.8% in Europe, the USA and worldwide, respectively, which 
makes it the third most frequent cancer worldwide in both sexes.1,2

Regarding CRC treatment, Chemotherapy can be used before 
surgery for some patients to shrink the tumor before it is eradi-
cated. In the late stages, it is used to increase the life expectancy 
of patients. Chemotherapeutic agents may include oxaliplatin, 
irinotecan, leucovorin, Tegafur-Uracil capecitabine, or 5-fluoro-
uracil. Additionally, cetuximab, panitumumab, or bevacizumab 
could be used as monoclonal antibodies in CRC immunotherapy.3 
The development of other effective drugs is urgently needed for 
CRC patients. As the epigenetics of CRC are increasingly un-
derstood, epigenetic modifiers (or epidrugs) targeting epigenetic 
mechanisms constitute a way to explore this process.
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Abstract
Colorectal cancer (CRC) is one of the most frequent causes of cancer-related death worldwide. Chemotherapeutic agents used 
in CRC treatment include oxaliplatin, irinotecan, leucovorin, Tegafur-Uracil, capecitabine, 5-fluorouracil, and monoclonal anti-
bodies. The development of other effective drugs is urgently needed for CRC patients. As the epigenetics of CRC is increasingly 
understood, epigenetic modifiers (or epidrugs) targeting epigenetic mechanisms could play an important role in this process. 
During the past two decades, many studies have demonstrated that many specific genes are silenced by hypermethylation 
of their promoters in CRC, which means that the expression of these genes could be restored since epigenetic alterations 
are reversible. In fact, some molecules have been studied for their ability to inhibit DNA methyltransferases, and the results 
showed that silenced genes were reactivated. These molecules could be natural, such as curcumin, tea polyphenols, quercetin, 
and nanaomycycin A, or synthetic, such as 5-azacytidine, decitabine, procainamide, and zebularine. On the other hand, we 
hypothesized in this article that ten-eleven translocation inhibitors could be another class of epigenetic modifiers since they 
could prevent chromosomal instability through decreasing the global hypomethylation of genomic DNA. Some studies have 
reported that some ten-eleven translocation inhibitors exhibit anticancer effects, which supports our hypothesis. Additionally, 
we have proposed combinations of these epigenetic modifiers according to different parameters.
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In this review, we will first elucidate epigenetic modifications 
involved in CRC with a focus on DNA methylation (hypermeth-
ylation and hypomethylation) and then provide a list of potential 
molecules (natural and synthetic) that could be used as epigenet-
ic modifiers to target alterations in gene methylation, one of the 
most involved epigenetic alterations in CRC. Finally, we propose 
combinations of these epigenetic modifiers according to different 
parameters, such as their source, mechanism of action, target and 
chemical structure. Information given in this paper could help re-
searchers in the development of new molecules and combinations 
of molecules to test as potential epigenetic modifiers in the treat-
ment of methylation alterations in CRC and other cancers.

Colorectal cancer epigenetics
Epigenetics is a heritable alteration of gene expression that does 
not affect the coding sequence of a gene. It has been confirmed 
that epigenetic alterations play a central role in cancer pathogen-
esis, especially in colorectal cancer.4 During the past two decades, 
many studies have reported a correlation between certain CRC-
specific gene expression patterns and the absence of gene muta-
tions. For example, microsatellite instability, one of the hallmarks 
of the CRC molecular subgroup, is the result of a deficiency in 
the DNA mismatch repair system. This instability, in addition to 
genetic mutations in one of the mismatch repair genes, can also 
be the consequence of epigenetic silencing of the MLH1 gene by 
hypermethylation of its promoter.5 On the other hand, it has been 
demonstrated that global hypomethylation of DNA could also lead 
to CRC through chromosomal instability (CIN).6

DNA methylation in CRC

DNA hypermethylation
Compared with those in normal cells, there are hundreds of hyper-
methylated genes in CRC tumors, as revealed by CRC epigenome 
sequencing.7 In the same study, researchers also showed that epi-
genetic alterations in tumors are significantly more prevalent than 
genetic alterations among patients.7 Another study reported that 
some groups of CRC patients have greater hypermethylation of 
promoter regions, known as the CpG island methylator pheno-
type.8 In a large study, genome methylation profiles were com-
pared between CRC cells and normal cells using the MBD-capture 
protocol.9 A total of 322,551 genomic regions (249.5 Mb of the 
human genome including 7 million CpG sites) were analyzed. Ac-
cording to the results of this study, most of the differentially meth-
ylated regions (DMRs) between CRC and normal cells were hy-
permethylated.9 Furthermore, hypermethylated DMRs were more 
frequent in intragenic, gene-regulatory, or CpG shelf-shore island 
segments, as shown in Table 1.10–32

DNA hypomethylation
The development and progression of CRC involves a series of 
events. These different steps, starting with the transformation of 
normal colonic epithelium to an adenomatous intermediate and then 
to an adenocarcinoma, require multiple genetic mutations. Among 
these genetic events, genomic instability is now described as the 
main molecular driving force in CRC. In fact, CIN has been reported 
in 65%–70% of sporadic CRC patients.33 There are at least three 
different pathways associated with genomic instability: CIN, micro-
satellite instability, and the CpG island methylator phenotype. The 
majority of CRC cases are caused by the CIN pathway. CIN is char-

acterized by aneuploidy (imbalances in chromosome number) and 
loss of heterozygosity (LOH), and it can result from defects in chro-
mosomal segregation, telomere stability, and DNA damage repair.34

Hypomethylation is recognized as an early molecular event 
leading to CIN that can cause deletion, translocation, inversion 
or duplication in the entire or part of the chromosome.35 As a 
consequence of global DNA hypomethylation, some genes can 
be released from inhibition induced by the methylation of their 
promoter and become overexpressed, which leads to the activa-
tion of oncogenic pathways that are crucial for CRC pathogenesis. 
Additionally, the exploration of global DNA methylation could 
have potential clinical applications, such as early cancer forma-
tion by cell-free DNA (cfDNA) fraction analysis. In fact, there 
is a good correlation between global DNA methylation and long 
interspersed nuclear element (LINE-1) methylation levels since 
LINE-1 (mobile genetic elements) retrotransposon composes ap-
proximately 17% of the human genome.33

Histone modifications
Histone modifications also play a key role in carcinogenesis. In the 
context of CRC, histone acetylation and methylation status have 
been widely studied, and it has been shown that they are associ-
ated with various clinicopathological features of CRC. In fact, it 
has been shown that H3K9me (methylation of lysine 9 on histone 
3) is more prevalent in CRC and adenomas compared to normal 
colonic mucosa, and H3K27ac (acetylation of lysine 27 on H3) 
and H4K12ac (acetylation of lysine 12 on H4) are more prevalent 
in CRC in comparison with normal mucosa.36 Additionally, ChIP 
(chromatin immunoprecipitation technique) of circulating nucle-
osomes revealed decreased levels of H3K9me3 (trimethylation of 
lysine 9 on H3) and H4K20me3 (trimethylation of lysine 20 on 
H4) in individuals with CRC compared with healthy individuals.37

Noncoding RNAs (ncRNAs)
ncRNAs (lncRNAs (long ncRNAs) and miRNAs (microRNAs)), 
which are considered to act via another epigenetic mechanism, can 
inhibit protein expression and consequently influence many can-
cer-related pathways, especially at the post-transcriptional level. 
MicroRNAs are involved in all CRC stages (initiation, progres-
sion and metastasis).38 For example, miR-143 prevents cell prolif-
eration through the inhibition of the KRAS mRNA transcript. This 
mRNA was found to be frequently downregulated in CRC.39

LncRNAs have attracted increasing interest as markers of CRC 
over the past few years. Many lncRNAs related specifically to co-
lon cancer have been identified in different databases (NONCODE 
database, PubMed, etc.). Most of these lncRNAs are upregulated, 
and it seems that they function as miRNA sponges. HOX transcript 
antisense intergenic RNA (HOTAIR), a lncRNA that has been ana-
lyzed in both serum and tissue, was shown to be upregulated in the 
early stages of CRC development.40 Colon cancer-associated tran-
script 1 (CCAT1) is another CRC-related lncRNA that is reported 
to be upregulated in both cancer cells and blood.41 In addition, it 
has been demonstrated that the expression of the lncRNA growth 
arrest specific 5 (GAS5) is downregulated in human colon cancer 
cells compared to normal tissues.42

Signaling pathways
In CRC, as well as in all other cancers, alterations in several signal-
ing pathways, such as the mitogen-activated protein kinase (MAPK) 
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pathway, PI3K pathway, and Wnt/β-catenin pathway, can lead to the 
onset and development of cancer.43 Crosstalk between these path-
ways can also promote colon cancer invasion and increase resist-
ance to drugs. Other pathways were reported to be involved in CRC, 
such as the Janus-activated kinase/signal transducers and activators 
of transcription pathway, 67 kDa laminin receptor pathway, nuclear 
factor-kappa B pathway, nuclear factor-erythroid 2-related factor 
pathway, and Hippo pathway. The Hippo pathway was shown to be 
responsible for cell proliferation, differentiation, apoptosis, and tu-
morigenesis,44 and its interaction with the Wnt/β-catenin pathway is 
crucial for colorectal cancer development (Fig. 1).45

Inhibitors targeting molecular signal transduction have modest 
efficacy in nonhematologic malignancies because of the complex-
ity of the genome in solid tumors. Thus, molecules designed to 
target abnormal DNA methylation, particularly in CRC, might be a 
more efficacious anticancer treatment strategy. As epigenetic mod-
ifications are reversible, the molecules that can target the enzymes 
involved in these mechanisms may be good drug candidates to fix 
these alterations and subsequently restore normal gene expression. 
These molecules are referred to as epidrugs or epigenetic modi-
fiers. In fact, many recent studies have reported that certain mol-
ecules are able to inhibit enzymes like DNMT (DNA methyltrans-
ferase) and HDAC (histone deacetylase), which are responsible for 
DNA methylation and histone deacetylation, respectively.46

Epigenetic modifiers as potential epidrugs for CRC treatment
As we have mentioned before, many studies have confirmed that 
epigenetic mechanisms, such as DNA methylation, histone modi-
fications and ncRNAs, are strongly involved in many processes of 
cellular physiology and development, and the alteration of these 
mechanisms could, under certain conditions, lead to carcinogen-

esis through alteration of the expression of oncogenes or tumor 
suppressor genes. Thus, since epigenetic modifications are revers-
ible, molecules able to restore normal gene expression by fixing 
epigenetic alterations could be good candidates for use as agents 
in the treatment of cancer, either alone or in combination with con-
ventional treatment. These molecules, called epigenetic modifiers 
or epidrugs, can target DNA methylation, histone modifications 
or ncRNAs. In this article, we will focus on molecules that target 
DNA methylation in CRC, namely, DNMT inhibitors (as hypo-
methylating or demethylating agents) and ten-eleven translocation 
(TET) inhibitors (as potential hypomethylating agents).

Demethylating (hypomethylating) molecules: DNA methyl-
transferase inhibitors (DNMTis)

DNA methyltransferases
DNA methylation is the most studied epigenetic mechanism, and 
it could be considered the most important. In fact, DNA methyla-
tion is involved in many physiological mechanisms, such as cel-
lular differentiation, parental imprinting, and X-chromosome in-
activation. DNA methylation is catalyzed by enzymes called DNA 
methyltransferases (DNMTs). These enzymes lead to the forma-
tion of 5-methylcytosine (5mC) by transferring a methyl group 
from S-adenosyl-L-methionine to cytosine at CpG sites in the 
gene promoter. In humans, de novo DNA methylation is ensured 
by DNMT3, while DNA methylation is maintained by DNMT1 (a 
multidomain protein consisting of 1,616 amino acids).

Currently, there is no doubt that deregulation of DNA meth-
ylation is associated with diseases, especially cancers. In fact, this 
epigenetic modification, when it occurs on oncogenes or tumor 
suppressor genes, could lead to carcinogenesis.47 Additionally, be-

Fig. 1. Some epigenetic alterations detected in CRC. Epigenetic alterations leading to CRC include DNA methylation (hypermethylation of TSG promotors 
and global hypomethylation that leads to CIN), histone modifications, and ncRNA (miRNA and lncRNA). ↗ (increased), + (presence), → (leads to). CRC, 
coloractal cancer; TSG, tumor suppressor gene, CIN, chromosomal instability; miRNA, microRNA; ncRNA, non coding RNA; lncRNA, long non coding RNA.
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cause of alterations in DNA methylation, cancer cells can escape 
apoptosis and resist chemotherapy.48

Recently, some studies reported that certain drugs approved for 
other indications could be good candidates for use as DNA meth-
ylation inhibitors. Among these drugs, hydralazine, procaine,49 
procainamide,50 and certain antibiotics, such as mithramycin A.51 
Other natural and synthetic molecules could also be good can-
didates for DNMT inhibitors.52 Recently, researchers have been 
working on the rational development of small-molecule non-nu-
cleoside inhibitors.53 This family of molecules is steadily grow-
ing and comprises a large variety of different chemical scaffolds 
like polyphenolic compounds such as epigallocatechin-3-gallate 
(EGCG) or compounds with acidic functions such as caffeic acid 
or methylenedisalicylic acid.54–56

Synthetic molecules

5-Azacytidine
5-Azacytidine, shown in the Figure 2, is a cytidine analog modi-
fied at position 5 of the pyrimidine ring (with nitrogen instead of 
carbon). Its incorporation into DNA disrupts the interaction be-
tween DNA and DNMTs (1 and 3). Consequently, the enzyme re-
mains covalently bound to DNA, and its function is inactivated.57 
Furthermore, because of the inhibition of cytosine methylation, 
there is a passive loss of methylation in daughter cells after repli-

cation. Azacitidine, known to reactivate the expression of some tu-
mor suppressor genes (TSGs), is approved by the US FDA for the 
treatment of myelodysplastic syndrome.58 This molecule restores 
the normal growth and differentiation of cells via the demethyla-
tion of TSG.59

A clinical study reported that treatment with 5-azacytidine in 
combination with entinostat (an HDAC inhibitor) restored TSG 
and inhibited the growth of CRC cell lines. The same study showed 
that the reversal of hypermethylation was observed in a subset of 
patients and correlated with improved performance status.60

Decitabine (and its derivative S-110)
Decitabineis a nucleoside analog of cytidine obtained by substi-
tution of a carbon by a nitrogen at position 5 of the pyrimidine 
ring of deoxyribose (Fig. 2). Like 5-azacytidine, decitabine acts 
by incorporating into RNA and/or DNA during the S phase of the 
cell cycle. Decitabine is more specific and less toxic than azaciti-
dine, but both are good DNMT inhibitors even at low concentra-
tions.61 In addition, decitabine alone or in combination with other 
chemotherapeutic agents, such as oxaliplatin, inhibited CRC cell 
proliferation.62

Procainamide
Procainamide, shown in the Figure 2, is a drug used to treat a va-
riety of atrial and ventricular dysrhythmias. Investigations have 

Fig. 2. Synthetic demethylating (hypomethylating) molecules. 
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shown that this molecule is a specific inhibitor of DNMT1. It is a 
competitive non-nucleoside inhibitor that interacts with the bind-
ing pocket of the enzyme, which increases the affinity of DNMT1 
for hemimethylated DNA and S-adenosyl-L-methionine. This 
inhibition of methylation leads to a reduction in the global 5mC 
content in the cell and decreases gene-specific hypermethylation at 
promoter CpG islands, which could lead to the reactivation of TSG 
inhibited by hypermethylation in cancer cells.63

Shih et al. showed that the IL27RA gene was downregulated in 
a group of rats with lung injury induced by LPS and upregulated 
in the LPS+procainamide group. Thus, the demethylation of the 
IL27RA promoter by procainamide restored the activation of this 
gene, which is known to have an anti-inflammatory effect in sev-
eral models of inflammation.64 Another study reported that exces-
sive methylation of antioxidant gene promoters increases oxidative 
stress in many diseases. The involvement of DNMT inhibitors in 
decreasing reactive oxygen species production has been observed 
in many diseases, such as osteoarthritis chondrocytes and lung ad-
enocarcinoma cells.65 Moreover, Chih-Chin has shown that hyper-
methylation induced by microbial infection is associated with in-
creased inflammation and oxidative stress.66 These results showed 
that procainamide may be a good candidate for use as a therapeutic 
agent in diseases caused by oxidative stress, like colorectal cancer 
(often associated with an alteration of the microbiota), because of 
its involvement in DNA demethylation, suppression of superoxide 
production and neutrophil infiltration.66 Gao et al. reported that 
Procainamide inhibits the Wnt (Wingless type) pathway, which is 
involved in carcinogenesis. Aberrant promoter methylation of Wnt 
inhibitory factor-1 (WIF-1) is a crucial mechanism of epigenetic 
silencing in human cancers, especially in colorectal cancer, where 
this hypermethylation targets the APC gene (adenomatous poly-
posis coli), which functions as an inhibitor of the Wnt signaling 
pathway.67

Procaine
Procaine, shown in the Figure 2, a local anesthetic drug, is a non-
nucleoside inhibitor. Its DNMT inhibitor effect was first reported 
in breast cancer cells, where it induced global DNA demethyla-
tion and restored the activation of certain TSGs.68 Moreover, it has 
been demonstrated that procaine, at high concentrations, decreases 
the proliferation of different cancer cells.69 Procaine acts by spe-
cifically binding to sequences rich in CpG islands, which inhibits 
the DNMT-DNA interaction.70

Procaine inhibits the proliferation and migration of CRC cells. 
Chang et al. reported that, when tested on HCT116 cells, pro-
caine significantly inhibited cell viability, increased apoptosis, 
and decreased the expression level of Ras homolog family mem-
ber (RhoA) in a dose-dependent manner (p < 0.05). In fact, this 
drug increased the proportion of HCT116 cells in the G1 phase and 
downregulated cyclin D1 and cyclin E expression. In this study, it 
was demonstrated that procaine inhibits the proliferation and mi-
gration of CRC cells through inactivation of the ERK/MAPK/FAK 
pathways via the regulation of RhoA.71

Zebularine
Zebularine, shown in the Figure 2, is a nucleoside analog. Its 
DNMT inhibitor effect is specific since it forms a close covalent 
complex between DNMT and zebularine-substituted DNA, which 
prevents methyl group transfer and subsequently inhibits DNA 
methylation.72 In human squamous carcinoma cell lines, zebular-
ine has been shown to reduce viability and DNA synthesis through 
cell cycle arrest at the G2/M phase and through apoptosis.73

The effect of zebularine on colorectal cancer was investigated 
by Yang et al., who reported that zebularine has cytotoxic effects 
on cancer cell cultures, tumor xenografts and a mouse model of 
colitis-associated CRC. This effect is achieved through the stabi-
lization of p53 via the ribosomal protein S7 (RPS7)/MDM2 path-
way and DNA damage.74

N-Phthalyl-L-tryptophan (RG-108)
N-Phthalyl-L-tryptophan is a non-nucleoside DNA methyltrans-
ferases inhibitor (IC50 = 115 nM) that blocks the active site of 
DNMTs (Fig. 2). It has been shown that N-phthalyl-L-tryptophan 
induces the demethylation and reactivation of TSG. In fact, in-
cubation of NALM6 and HCT116 (human colon carcinoma) cell 
lines with low concentrations of this molecule results in significant 
DNA demethylation without any detectable toxicity.75

SGI-1027
SGI-1027, shown in the Figure 2, is a quinoline-based com-
pound. It is a nonnucleoside inhibitor of DNMT3B, DNMT3A, 
and DNMT1 with IC50 values of 7.5 µM, 8 µM, and 12.5 µM, 
respectively (with poly-dI-dC as the substrate). Jharna Datta et al. 
demonstrated that SGI-1027 inhibits these DNMTs by competing 
with S-adenosylmethionine in the methylation reaction. Different 
cancer cells were treated with SGI-1027, and the results showed 
that there was selective degradation of DNMT1 with minimal or 
no effect on DNMT3A or DNMT3B. Moreover, prolonged treat-
ment of RKO (colorectal cancer cells) with SGI-1027 led to de-
methylation and reactivation of the silenced TSG P16, MLH1, and 
TIMP3. Additionally, the same study reported the involvement of 
the proteasomal pathway in the mechanism of action of this mol-
ecule. In addition, no significant toxicity has been detected in a rat 
hepatoma (H4IIE) cell line.76

Laccaic acid A
Laccaic acids or laccainic acids, shown in the Figure 2, are a group 
of five anthraquinone derivatives. Laccaic acid A (LCA) is a tet-
rahydroxyanthraquinone (3,5,6,8-tetrahydroxy-9,10-anthraquinone) 
substituted by two carboxy groups at positions 1 and 2. It has been 
reported that LCA is a DNMT1 inhibitor with Ki = 310 nM and IC50 
= 650 nM. In a study aiming to evaluate the anti-colorectal cancer 
activity of the combination (LCA+ 5-FU), the results demonstrated 
that LCA is a highly DNA-competitive inhibitor of DNMT1. Ac-
cording to in vitro methylation assays, LCA competes with DNA 
substrates and alters the expression of methylated genes in the MCF-
7 cell line.77 In another study, it was shown that LCA combined with 
phenethyl isothiocyanate has a strong synergistic effect on CRC. 
Additionally, LCA inhibited human colon carcinoma HT29 cell 
growth with an IC50 value of 6.08 µM after 72 h of treatment and 
induced cell apoptosis and cell cycle arrest at the sub-G1 phase.78

MG-98
MG-98 is referred to as the second-generation DNMT inhibitor. 
It is a 20-mer antisense compound with a phosphorothioate back-
bone. MG-98 is a highly specific inhibitor of DNMT1 mRNA 
translation in humans. It acts by binding to the 3′ untranslated re-
gion of DNMT1 mRNA. In vitro studies have reported that this 
oligonucleotide restores the expression of the cyclin-dependent ki-
nase inhibitor p16 (α-CDKN2A) through suppression of DNMT1 
expression.79 In preclinical studies and clinical phase I/II trials, it 
has been demonstrated that MG-98 can lead to the reactivation of 
silenced tumor suppressor genes safely and effectively. Thirty-two 
patients with gastric, colonic, ovarian, breast, renal, lung cancer, 
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and melanoma were treated with MG-98 administered as a 7-day 
continuous infusion every 14 days, and DNMT1 activity in PB-
MCs was monitored during two cycles of therapy. DNMT1 inhibi-
tion was reported in 26 of 32 patients, and MG-98 was well toler-
ated, with early evidence of a clinical effect.80

Natural molecules

Curcumin
Curcumin, shown in the Figure 3, a plant-derived polyphenol, has 
been shown to inhibit DNMT activity in various cancer cell lines, 
including colorectal cancer cells, through the regulation of multi-
ple signaling pathways. These pathways include cell proliferation 
pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, 
cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 
9), tumor suppressor pathway (p53, p21), death receptor pathway 
(DR4, DR5), mitochondrial pathways, and protein kinase pathway 
(JNK, Akt, and AMPK).81,82 Additionally, curcumin treatment has 
been reported to decrease global DNA methylation in a model of 
leukemia cells.83 In another study aiming to assess the antitumor 
effect of curcumin on CC531 colorectal cancer cells both in vitro 

and in vivo, the results showed that this natural product reduced 
cell proliferation by more than 30% after 48 h and 50% after 72 
h. The same study demonstrated, using a wound healing test, that 
curcumin inhibited migration. Finally, in vivo, curcumin reduced 
the tumor volume of liver implants of CRC cells by 5.6-fold.84

Tea polyphenols: EGCG, catechin and epicatechin
Several tea catechins and bioflavonoids have been studied for their 
ability to modulate DNA methylation catalyzed by prokaryotic 
SssI DNA methyltransferase and human DNMT1 (Fig. 3). Accord-
ing to the results of these studies, catechin and epicatechin inhibit-
ed DNMT1 in a dose-dependent manner with IC50 values ranging 
from 1.0 to 8.4 µM. The IC50 of EGCG, the most potent inhibitor, 
ranged from 0.21 to 0.47 µM.85 Since EGCG is the most effective 
polyphenol, its mechanism of action was studied in silico. In silico 
studies demonstrated that the gallic acid moiety is responsible, in 
large part, for its high-affinity and direct inhibitory interaction with 
the DNMT1 catalytic site, and its interaction with the enzyme is 
stabilized by Mg2+.85

Other in vivo and epidemiological studies have reported that tea 
polyphenols can inhibit the growth and metastasis of CRC through 

Fig. 3. Natural demethylating (hypomethylating) molecules. 
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anti-inflammatory, anti-oxidative, and pro-apoptotic effects. Some 
studies have shown that these natural molecules can influence sev-
eral signaling pathways in tumor cells, such as mitogen-activated 
protein kinase pathway, phosphatidylinositol-3 kinase/Akt path-
way, Wnt/β-catenin pathway, and 67 kDa laminin receptor path-
way, leading to the inhibition of cell proliferation and apoptosis. 
Additionally, other studies have suggested that tea polyphenols can 
prevent the growth and metastasis of colorectal cancer by improv-
ing the immune response and decreasing inflammatory responses 
through the modulation of the gut microbiota composition.86

Quercitin
According to the results of a study aiming to evaluate the poten-
tial of quercetin, shown in the Figure 3, as an epigenetic modifier 
in cancer, this phytochemical decreases the activity of DNMTs, 
HDACs, and HMTs (histone methyltransferases) in a dose-de-
pendent manner. The same study reported that quercetin decreased 
global DNA methylation levels in a dose- and time-dependent man-
ner and restored TSG expression by demethylating their promot-
ers. Additionally, an in silico study (molecular docking) showed 
that quercetin could act as a competitive inhibitor by interacting 
with residues in the catalytic site of several DNMTs and HDACs.87

The protective effect of quercetin on colon cancer was investi-
gated in 45 rats using azotoxin methane (15 mg/kg s.c.) as a car-
cinogen. The results showed that quercetin reduces cytological 
changes in colon cancer cells, decreases beta-catenin and Bcl-2 
(anti-apoptotic gene) expression, and increases caspase 3 (apop-
totic gene) expression.88

Nanaomycin A
Nanaomycin A (see Figure 3 bellow) is an anthracycline antibiotic 
belonging to the quinone class. It was isolated from Streptomyces. 
Its mechanism of action depends on its reduction by respiratory 
chain-linked NADH or flavin dehydrogenase. The reduced form 
of this molecule produces singlet molecular oxygen (O2

−) after its 
quick auto-oxidation by molecular oxygen, which is responsible 
for its antimicrobial activity.89

Since it induces antiproliferative activity against cancer cell 
lines, the epigenetic effect of nanaomycin A was first studied by an 
in silico screening method for the inhibition of DNMTs. Kuck et al., 
in a biochemical study, reported that this molecule interacts with 
the catalytic site of DNMT3B at specific AAs (Glu697, Arg731 and 
Arg733) of the enzyme binding pocket. It has been shown that this 
drug decreases the expression of DNMT1, 3A and 3B.56 This mole-
cule can also inhibit DNMT3B activity by reactivating the RASSF1A 
tumor suppressor gene, which reduces cell proliferation and viabil-
ity.56,90 In fact, RASSF1A (Ras association domain family 1), a pro-
apoptotic gene involved in microtubule stabilization, is among the 
genes that are commonly silenced by methylation in CRC. The loss 
of this gene leads to an increase in RAS/RAF/MAP kinase signaling 
and death receptor-dependent apoptosis.91

Resveratrol
Resveratrol is a natural polyphenol that has many biological activi-
ties. Recently, Resveratrol was shown to reactivate silenced tumor 
suppressor genes through decreasing DNMT expression. Addition-
ally, synthesized derivatives of resveratrol (resveratrol-salicylate) 
could exhibit an important DNMT inhibitor effect. Some of these 
analogs selectively inhibit DNMT3. Additionally, the most active 
derivative showed an important cytotoxic effect (greater than that 
of resveratrol) against three human cancer cell lines: Hep-G2, SK-
BR-3, and especially HT-29 (colorectal adenocarcinoma cells).92,93

Other natural molecules
Other natural molecules, such as fisetin,94 myricetin,95 theafla-
vin,96 thearubigin,96 trichostatin,97 kazinol,98 genistein, silibinin, 
luteolin, boswellic acid, mahanine and selenium, have been report-
ed to exhibit a DNMT inhibitory effect,99 which makes them good 
candidates for use as hypomethylating agents for CRC treatment 
(Table 2).

Hypermethylating molecules

TET Inhibitors (ten-eleven translocation inhibitors)
DNA methylation contributes widely to the dynamic chromatin 
states that impart precise epigenetic landscapes, which maintain 
cell type-specific transcriptional programs. Before the discovery 
of TET protein enzymes, it was believed that DNA methylation 
is an irreversible epigenetic event. These enzymes can modify 
methylcytosine and potentially erase DNA methylation.100 They 
also play a key role in the efficient transcription of target genes 
necessary for the proliferation and survival of tumor cells.101 
TETs are a family of three proteins, TET1, TET2, and TET3, 
that are responsible for the catalysis of successive oxidation re-
actions of 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, 
and 5-carboxylcytosine, respectively as seen in the Figure 4 bel-
low.102,103

As with DNMTs, the activity of TET enzymes, which are in-
volved in removing epigenetic marks, is also a part of the disrup-
tion of epigenetic landscapes characterizing malignant transforma-
tion. Moreover, since TETs function is to demethylate CpG islands 
of genomic DNA, this could be responsible for, or at least increase, 
global DNA hypomethylation, which could lead to chromosomal 
instability. Consequently, we can hypothesize that this family of 
enzymes could be an interesting target for epigenetic modifiers in 
the treatment of cancer. Indeed, in principle, inhibition of TETs 
could lead to a decrease in global DNA hypomethylation and 
therefore prevent chromosomal instability. The fact that some TET 
inhibitors exhibit anticancer activity supports our hypothesis.104,105

Cytosine-based TET enzyme inhibitors
Some cytosine derivatives, shown in the Figure 5 bellow, have 
been synthesized by substitution at the 5 position and evaluated for 
their capacity to inhibit TET1 and TET2. The results showed that 
the derivative obtained by chlorination at this position, Bobcat212, 
had the most inhibitory effect, at 57% and 43%, on TET1 and 
TET2, respectively. Another interesting derivative, Bobcat339, 
which is substituted at the R2 position with 3-biphenyl, signifi-
cantly increased the inhibitory effect of TET1 and TET2 without 
inhibiting DNMT3a.106

αKG-dependent dioxygenases
2-Hydroxyglutarate (2HG), N-oxalylglycine (NOG), and dimethyl 
fumarate (DMF) are known for their inhibitory effects on a vari-
ety of αKG-dependent dioxygenases.107 Several molecules were 
synthesized by substitution of the C4 position with either -keto, 
-olefin, -methyl, or -cyclopropyl functional groups, and the C2 po-
sition was single or double substituted with -chloro, -fluoro, -hy-
droxy, -methyl, or –trifluoromethyl groups. These derivatives were 
subsequently tested in vitro and in vivo for their ability to induce 
cancer cell death and TET dioxygenase inhibition. These results 
suggested that TET inhibitors need to be further investigated as a 
new class of targeted agents for cancer treatment.104
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C35
Forty TET inhibitors were designed using a virtual ligand screen-
ing pipeline (Lvspipe), and tested in vitro for their inhibitory ac-
tivity. The results demonstrated that C35, shown in the Figure 5 
below, can inhibit the catalytic activities of both TET1 and TET3 
with IC50 values of 3.48 µM and 2.31 µM, respectively. Using 
molecular modeling, the same study reported that there is an inter-

action between C35 and the TET2 catalytic domain.108

Proposed epidrug combinations

The epigenetic modifiers discussed in this article could be used 
alone or in combination. Combinations of molecules with different 
mechanisms of action are widely used to treat different diseases, 
especially cancer.109 Here, we propose some potential combina-

Table 2.  Some DNMT inhibitors used as potential epigenetic modifiers in CRC, classified according to their target, their origin, and their mechanism of 
action

DNMT i Target Nucleoside/non nucleoside Mechanism of action Natural/synthetic

Azacitidine Global
DNMT

Nucleoside inhibitor Incorporation into the RNA 
and/or genomic DNA

Synthetic

Decitabine Global
DNMT

Nucleoside inhibitor Synthetic

S110 (derivative of Decitabine) Global
DNMT

Nucleoside inhibitor, Synthetic

Curcumin Global
DNMT

Non-nucleoside inhibitor, Direct inhibitory interaction 
of the catalytic site

Natural

EGCG DNMT1 Non-nucleoside inhibitor, Natural

Catechin DNMT1 Non-nucleoside inhibitor, Natural

Epicatechin DNMT1 Non-nucleoside inhibitor, Natural

Quercetin DNMT1 Non-nucleoside inhibitor, Natural

Fisetin DNMT1 Non-nucleoside inhibitor, Natural

Resveratrol DNMT Non-nucleoside inhibitor Natural

Genistein DNMT1 Non-nucleoside inhibitor Natural

resveratrol-salicylate derivatives DNMT3B Synthetic

Myricetin DNMT1 Non-nucleoside inhibitor, Natural

block the binding of 
DNMTs to DNA

Procainamide DNMT1 Non-nucleoside inhibitor, Synthetic

RG108 (found by virtual screening) DNMT1 Non-nucleoside inhibitor, Synthetic

Procaine Global
DNMT

Non-nucleoside inhibitor, Synthetic

SGI-1027 (lipophilic, quinoline-
based compound)

Global
DNMT

Non-nucleoside inhibitor, competitive inhibitor of SAM Synthetic

Zebularine Global
DNMT

Nucleoside inhibitor, form a covalent complex 
with DNMT and cytidine 
deaminase in DNA

Synthetic

Laccaic Acid A DNMT1 DNA-competitive inhibitor Synthetic

MG-98 (20 bp anti-sense 
oligonucleotide)

DNMT1 Non-nucleoside inhibitor, antisense oligonucleotide 
binding DNMT1

Synthetic

Theaflavin 3, 3′-digallate N6 DNMT3A Non-nucleoside inhibitor, dietary polyphenols from 
black tea and coffee

Natural

Thearubigin DNMT3A Non-nucleoside inhibitor, Natural

Nanaomycin A DNMT3B Non-nucleoside inhibitor, quinone antibiotic Natural

Trichostatin A DNMT3B Non-nucleoside inhibitor Natural

Kazinol C DNMT Non-nucleoside inhibitor Pro-apoptotic (via 
AMPK activation)

Natural

AMPK, AMP-activated protein kinase; CRC, colorectal cancer; DNMT, DNA methyltransferase; EGCG, epigallocatechin gallate; SAM, S-adenosyl-L-methionine.
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tions of epidrugs that could be useful for the treatment of CRC. 
These combinations are designed according to different param-
eters, as shown in the Table 3.

Conclusions
Currently, epigenetic alterations are being increasingly explored as 
targets in the treatment of cancer, especially CRC. This is because 
epigenetic modifications are reversible, which means that they 
can be fixed by molecules called epigenetic modifiers. Among 
these epigenetic alterations that could lead to CRC carcinogen-
esis, alterations in the methylation of gene promoters are the most 
studied, which prompted researchers to look for molecules target-
ing these alterations. As we have detailed in this article, many 
natural and synthetic molecules could be interesting candidates 

as epigenetic modifiers targeting the alteration of methylation in 
CRC. Two categories of these molecules have been described. 
The first group consists of DNMT inhibitors, which are hypo-
methylating (or demethylating) agents that can restore the expres-
sion of genes silenced by hypermethylation of their promoters. In 
the second group, we identified TET inhibitors that could prevent 
chromosomal instability through decreasing the global hypometh-
ylation of genomic DNA. Finally, these epidrugs could be tested 
alone, in combination with each other, or with other conventional 
chemotherapeutic drugs. Although several DNMTis are used in 
the clinic, there are still some limitations of DNMTis, such as 
toxicity and lack of selectivity, that could be overcome by strate-
gies like combination with other molecules and/or modification 
of their chemical structure to develop novel molecules with more 
efficacy and less limitations.

Fig. 4. Successive oxidation reactions of 5mC. DNMT, DNA methyltransferase; SAM, s-adenosylmethionine; 5mC, 5-methylcytosine; 5hmC, 5-hydroxym-
ethylcytosine; 5-fC, 5-formylcytosine; 5-caC, 5-carboxycytosine; TET, ten-elleven translocation, 5hmC, alpha ketoglutarate; TDG, thymine DNA glycosylase; 
BER, base excision repair.

Fig. 5. Hypermethylating molecules. (a) Cytosine derivatives; (b) C35.
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